A Lower Bound on the Variance of Algebraic Ellipsoid-fitting Center Estimator

نویسنده

  • Jia Li
چکیده

Ellipsoid fitting is a widely used technique in 3D shape modeling, which simultaneously estimate the center and orientation of 3D object. This paper explores the limits of performance for the ellipsoid-fitting center estimator. It is shown that the noise in the surface sample data can be approximated by a Gaussian distribution when the signal to noise ratio is high. The Cramér-Rao lower bound is applied to yield a bound on the variance of unbiased ellipsoidfitting center estimator. The simulation results show that the bound is approachable by the center estimator developed from Bookstein’s ellipsoid fitting method when the noise level is low.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Structure of Bhattacharyya Matrix in Natural Exponential Family and Its Role in Approximating the Variance of a Statistics

In most situations the best estimator of a function of the parameter exists, but sometimes it has a complex form and we cannot compute its variance explicitly. Therefore, a lower bound for the variance of an estimator is one of the fundamentals in the estimation theory, because it gives us an idea about the accuracy of an estimator. It is well-known in statistical inference that the Cram&eac...

متن کامل

Consistent least squares fitting of ellipsoids

A parameter estimation problem for ellipsoid fitting in the presence of measurement errors is considered. The ordinary least squares estimator is inconsistent, and due to the nonlinearity of the model, the orthogonal regression estimator is inconsistent as well, i.e., these estimators do not converge to the true value of the parameters, as the sample size tends to infinity.A consistent estimato...

متن کامل

A Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator

In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, ...

متن کامل

Adjusted least squares fitting of algebraic hypersurfaces

We consider the problem of fitting a set of points in Euclidean space by an algebraic hypersurface. We assume that points on a true hypersurface, described by a polynomial equation, are corrupted by zero mean independent Gaussian noise, and we estimate the coefficients of the true polynomial equation. The adjusted least squares estimator accounts for the bias present in the ordinary least squar...

متن کامل

A statistical analysis of the Delogne-Kåsa method for fitting circles

In this paper, we examine the problem of fitting a circle to a set of noisy measurements of points on the circle’s circumference. Delogne (Proc. IMEKO-Symp. Microwave Measurements 1972, 117-123) has proposed an estimator which has been shown by Kåsa (IEEE Trans. Instrum. Meas. 25, 1976, 8-14) to be convenient for its ease of analysis and computation. Using Chan’s circular functional model to de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006